Joint Technology Exchange Group

Advanced Technology Demonstrations (ATDs)

24 Oct 2003
Mike McMillan
AFMC/ENB

AFRL ATDs

Rapidly delivering war-winning capability

AFRL Commissioned ATD's	Champion	Co-Champion		
Advanced NDE for Aging Structures	OC-ALC	WR-ALC		
Aging Wiring Systems Diagnostics	OO-ALC	WR-ALC		
Engine Rotor Life Extension	OC-ALC	NA		
Corrosion Effects on Structural Integrity	WR-ALC	OO-ALC		
Advanced Aircraft Corrosion Protection	WR-ALC	OC-ALC		
Bonded Repair Capability Enhancements	WR-ALC	OC-ALC		
Bonded Repair of Thick/Complex Structures	WR-ALC	OO-ALC		
Non-critical Laser Additive Manufacturing	WR-ALC	NA		
No New Candidates This Round				

Enabling Capability

Advanced NDE for Aging Structures

Rapidly delivering war-winning capability

chnology Investment Schedule (FY)		As of 27 Aug 2003)3
	Prior	03	04	05	
Corrosion Methods Assessment / Development	A	В		C	
Crack Detection Assessment / Development	D			Ē	
Technology Availability Dates	A, D			C, E	
6.2 Funding (\$M)	2.6	1.1	1.2	1.0	
6.3 Funding (\$M)	2.1	1.7	1.6	1.1	

Description

- Periodic delivery of NDI methods to detect and quantify corrosion
- NDI methods targeted at multi-layer crack detection and quantification

Technology

- NDE methods with rapid, large area scanning capability.
- · Probability of Detection methodology.
- Computer simulation models for NDE methodologies

Benefits to the War Fighter

- Increased safety through detection and elimination of detrimental multi - site damage
- Improved readiness through reduction of time in depot - increased aircraft availability
- Reduced maintenance costs
- Eliminate unnecessary teardown

Aging Wiring System Diagnostics

Rapidly delivering war-winning capability

AFRL/ML

Technology Investment Schedule (FY) As of 8 Oct 03 **Prior** FY03 FY04 **Technology Availability Establish Architecture Integrate Diagnostic System Testing & Validation CONTRACT FUNDING (\$K)** AFRL/ML 6.3 125 DUS&T 500 FAA 125 Industry 500 300 88

Description

 Develop, validate, & transition a portable wiring system tester to the user community (both military & commercial).

Technology

- Ability to detect opens & shorts, as well as provide fault location.
- Diagnostic system that:
 - Guides users in fault detection
 - Interprets and archives system data
 - Alerts user to type of problem.

Benefits to the War Fighter

The aging of a wiring system can result in loss of critical functions in aerospace equipment or loss of critical information regarding equipment operation. Fielding AFRL's wiring system diagnostics will:

- Reduce troubleshooting & repair time by 50%
- Reduce unneeded Line Replacement Units (LRUs) replacement by 65%
- Provide the foundation for managing wiring as a system

Engine Rotor Life Extension (ERLE) Spiral IRapidly delivering war-winning capability

AFRL/ML

Technology Investment Schedule (FY) As of 15 Oct 03

Cost Avoidance through Life Extension

Component Assessment

Adv. Throughput Processes

Surface Defect Inspection

Embedded Defect Inspection

6.3:

7.8:

7.8:

Data Management

Funding (\$M)

PRAM (\$M)

ManTech (\$M)

Prior	03	04	05	06
	A	A	A	
-	/B\	/B`		
		/c\	C	
		D		
	A	Δ		
	E			

24

Description	
	۱
Description	ı

 In partnership with OC-ALC, mature, validate, and implement advanced nondestructive evaluation tools and repair technologies that increase safety and extend useful life of critical turbine engine components

Technologies

 Non-destructive evaluation, data fusion, and repair technologies

Benefits to the War Fighter

16

7.9

 Increased safety through improved inspections and more accurate life prediction

3.7

- Improved readiness through reduced depot overhaul time and cost
- Reduced component replacement cost
 - Cost Avoidance over \$300M

Enabling Capability

Rapidly delivering war-winning capability

Determine Strategies to Increase System Availability

Corrosion Effects on Structural Integrity

U.S. AIR FORCE

Rapidly delivering war-winning capability

AFRL/VA

Technology Investment Schedule (FY) As of 1 Jul 03

		Prior	UZ	03
Stress Corros	ion Cracking			
Guidelines				
Identify Proble	ems & Assess			
Corrosion Mod	dels			
Model Develop	oment & Element			
Testing				
Component Do	emonstration and			
Model Verifica	ation			
Technology A	vailability	A	A	A
	-	TRL 6	TRL 6	TRL 7
Funding (\$M)	6.2/6.3	6.4	1.9	0.7
	NAVY	1.0		

Product Description

- Stress Corrosion Cracking Guidelines Delivered
- Structural Integrity (Corrosion/Fatigue) Model– Framework Delivered
- Structural Integrity Tool Set, Modified Aircraft Tracking System, Handbooks & Inspection Capability Guidelines

Technologies

- Techniques to assess Corrosion impact on Structural Integrity
 - Improve capability of Aircraft Structural Integrity Program

Benefits to the War Fighter

0.2

- Increase Operational Readiness
- Maintain Safety

Nunn

- Reduce Operations and Support Cost
 - Reduced Maintenance Actions
 - Extend Structural Life
 - Reduce Cost of Maintenance of C-130, C-141, KC-135, C-5, F-15, F-16, A-10 ...

Enabling Capability

Rapidly delivering war-winning capability

Advanced Aircraft Corrosion Protection

AFRL/ML

Technology Investment School	edule (FY)	As of 24 Jan 02
	Prior	01
Adv. Topcoat Development		
Corrosion Protection Devel		
Tech Availability		
Funding (\$M) - 6.2	.99	.68
DARPA/AFOSR (\$M)	.82	.40

Description

 Product: Corrosion protection systems with long life topcoat and environmentally safe, non-chrome corrosion protection (sol-gel) demo'ed in a depot environment

Technology

- Advanced performance topcoat with service life of 5-8 yr (PDM to PDM)
- Non-chrome sol-gel based corrosion resistant surface treatments

Benefits to the Warfighter

- Supports ACC MNS/ORD "Advanced Aircraft Coating Capability" (MNS CAF/AMC/AETC/ AFSOC/AFMC 712-97)
- Elimination of corrosion protection related hazardous wastes and materials
- Reduced depot flow time and related maintenance costs

For Official Use Only

Bonded Repair Capability Enhancements

AFRL/VA/ML

Technology Investment Schedule (FY) As of 1 Jul 02 **Prior** 02 03 **Expanded Materials Database Advanced Metal Surface Prep** Updated Bonded Repair Guidelines Validated D&A Models/Software **Technology Availability** Funding (\$M) 6.2/6.3 7.0 2.7 6.3B (CEV) Funding 0.3 **SERDP** Funding 1.4

		4 .	
1100	OKIK	TI.	1
1765			
Des	O 1 1 P		

- Design/Analysis (D&A) Methods and Materials/Processes (M&P) for Bonded Repairs
- Validation of Models and Processes
- Documented Guidelines/Procedures and Repair Materials Data

Technologies

- PC- based Software Tools for Design & Analysis
- Sol- gel Processes for Metal Surface Preparation

Benefits to the War Fighter

- Decreased Maintenance and Support Costs and Increased Aircraft Availability
 - Reduced Design and Analysis Time
 - Reduced Repair Installation Time
 - Improved Repair Reliability/Effectiveness
 - Reduced Use of Hazardous Materials

Non-critical Ti Components via Laser Additive Manufacturing (LAM) Spiral

Technology Investment Schedule (FY)		As of 26 Sep 03	
	Prior	03	04
Chem. & Heat-Treat Selection			
Producibility Demo			
Cost-Savings Eval.			
Technology Availability			
6.2 Funding (\$M)	0.4		
6.3 Funding (\$M)	0.6		
Industry Funding (\$M)	0.6		

Description

- Application of Novel Manufacturing Method to Reduce Lead Time and / or Acquisition Cost for F-15 Pylon Ribs and C-17 Pylon Panels
- Strategy Development to Spiral Transition to Additional Non-critical Components on Multiple Systems

Technology

- Freeform Fabrication of ~100% Dense Ti Preforms Via Rastering of Laser Beam and Powder Source Across Ti Substrate
- Applicable to Certain Non-critical Parts Based on Performance Requirements, Part Geometry, and Cost/Benefit Analysis

Benefits to the War Fighter

- Improved Operational Readiness:
 - Reduced Manufacturing <u>Lead</u>
 <u>Time</u> for New or Replacement
 Components
 - Higher Material Yield Than Forging & Machining
 - Potential Acquisition Cost Savings on per-Component Basis

